
Systems Engineering for Software Engineers
Ian Sommerville

Computing Department, Lancaster University, Lancaster LA1 4YR, UK
is@comp.lancs.ac.uk

Abstract

This paper describes how we have modified a software engineering stream within a
computer science course to include broader concepts of systems engineering. We justify
this inclusion by showing how many reported problems with large systems are not just
software problems but relate to system issues such as hardware and operational
processes. We describe what we mean by ‘systems engineering’ and go on to discuss
the particular course structure which we have developed. We explain, in some detail,
the contents of two specific systems engineering courses (Software Intensive Systems
Engineering and Critical Systems Engineering) and discuss the problems and challenges
we have faced in making these changes. In the Appendix, we provide details of the case
studies which are used as linking themes in our courses.

Introduction

Software engineering gets a really bad press. All too often, we read horror stories of
how software engineering projects have gone wrong with massive delays and cost
overruns. The software ‘crisis’ which first emerged over 30 years ago is still claimed
by some authors such as Pressman [1], who renames it as ‘software’s chronic
affliction’, to be a reality of current software development. High-profile system failures
such as the Denver Airport baggage handling system (in the USA) and the London
Ambulance despatching system (in the UK) have been widely publicised. Software and
the poor state of software engineering has been blamed for these failures.
As an illustration of this, consider the reported problems with the Denver airport
baggage handling system. This is an automated system to move baggage from aircraft
to terminals which relies on software-controlled baggage carts propelled by linear
induction motors. There were serious problems in the development and commissioning
of this system. This delayed the opening of the new Denver airport and meant that the
airport managers incurred significant costs after opening because the system was less
effective than planned.
In the Scientific American of September 1994, problems with this system were
discussed in an article headlined “Software’s Chronic Crisis” [2]. The author of the
article wrote:

“...For nine months, this Gulliver has been held captive by Lilliputians - errors
in the software that controls its automated baggage system...”

He goes on to discuss general problems with software development and engineering
and illustrates these with other examples of cancelled projects which he claims were due
to software failures. The general impression from this widely-read article is that the
problems of the Denver airport system were exclusively software problems.
However, when we look at another account of the Denver Airport system [3], we see
that the problems with the system were much more than software problems. They
included problems of system acquisition, volatile requirements, management and
hardware design. The system is immensely complex and includes:

• over 17 miles of track
• 5.5 miles of conveyors
• 4000 baggage carts (telecarts)
• 5000 electric motors
• 2, 700 photocells

• 59 bar code reader arrays
• 311 radio frequency readers
• more than 150 computers

The intention of the system was that baggage transfer would be handled automatically
using a system of conveyors and baggage carts which delivered individual bags to
specified destinations in the airport. The airport authorities decided to acquire a system
which was based on one bag per cart rather than a tested system based on multi-bag
carts. This was in spite of a consultancy report which stated:

 “With regards to the single-bag DCV, considering the prototype state we
strongly feel that it is not capable of being implemented within the project schedule”

While the system was being developed, the requirements changed radically and the
software was expected to cope with the change:

“In May 1992, the airlines and the city ordered a major revision of the
automated baggage system while it is under construction”

There were problems with the management of the different contractors who were
responsible for developing and installing the system:

 “21 October 1992: a BAE superintendent complained that another contractor
was denying his crews access to the work site. Infighting continued through 1993”

The hardware design caused difficulties and the hardware did not operate correctly in
some situations:

 “The baggage system continued to unload bags even though they were jammed on
the conveyor belt. This problem occurred because the photo eye at this location
could not detect the pile of bags on the belt and hence could not signal the system to
stop”

As well as all of these problems, there were also problems with the software:

“The timing between the conveyor belts and the moving telecarts was not
properly synchronised causing bags to fall between the conveyor belt and the
telecarts”

Therefore, we can see that the problems with this system were really much broader than
simply software problems. Blaming the delays and difficulties on poor software
engineering misrepresents reality. Better software engineering may have avoided some
of the problems but this project was probably doomed from the outset. The system, as a
whole, and not just the software failed to operate correctly.
A similar picture emerges in other high-profile systems failures. They are often
represented in the press as being primarily software failures but, when we look at them
in more detail, we see that the problems are not only software problems but are a result
of more general failings in the systems engineering process.
The official report of why the London Ambulance Despatching System failed identified
other types of system problem which can arise:

“the system relied on a technical communications infrastructure that was
overloaded and unable to cope easily with the demands that the CAD would place
upon it particularly in a difficult communications environment such as London”

“Management clearly underestimated the difficulties involved in changing the
deeply ingrained culture of LAS and misjudged the industrial relations climate so
that staff were alienated to the changes rather than brought on board”

“the early decision to achieve full CAD implementation in one phase was
misguided...”

Given these reasons for system failure why then does software get the blame? In many
projects, software is delivered late and does not operate as required so, ostensibly, there
is a problem with the software engineering. However, when we examine why the
software is late, we see that the reasons are often due to underlying systems engineering
problems. In order to cope with other systems problems, demands are made for
software changes at a late stage in the system development. Of course, these demands
for change may be made for good reasons:

• New customer requirements emerge which have to be accommodated in software
because the hardware has already been designed and manufactured.

• The impact on the system on organisational processes may not have been properly
analysed. When process changes become necessary, the software user interface and
sometimes its structure has to be changed to accommodate these.

• Hardware incompatibilities are discovered during system integration and the
software must be changed to ensure that the different hardware units can work
together.

• Hardware fails to perform to its specification so additional processing by the
software is required.

These difficulties mean that the software specification is essentially unstable and good
software engineering can only reduce the extent of the problems. Budget overruns and
delays in delivery are inevitable when the developers of the software must constantly
accommodate change.
It is unrealistic to think that the answer to these problems is stable software
specifications. The essence of software is its malleability and the resulting flexibility is a
very important reason why organisations demand more software in their computer-
based systems. We must accept that other problems of systems engineering will
inevitably mean that there will be demands for software changes at a late stage in the
development process. Cost and schedule overruns are the price we have to pay for
system flexibility.
I have deliberately gone into this at some length because I believe that the issue is a very
important one for software engineering educators. Many software engineering courses
such as courses in requirements engineering, object-oriented development and
programming methods focus on techniques for developing software which is more
amenable to change. However, it is relatively uncommon to discuss the broader
systems context and to consider why , in practice, demands for radical software
changes may be requested.
This lack of understanding of software’s operational context has, I believe, two
consequences:

1. Some students, especially those who are self-taught programmers, do not appreciate
the need for disciplined approaches to software development. They have a
programming model which focuses solely on the software and they do not
understand the relationships between software and other components of large,
complex systems.

2. Graduates from computer science and software engineering courses do not
understand the problems faced by engineers and managers from other disciplines.
This means that communication is difficult and participation by software engineers
in the systems engineering process is limited. Important decisions affecting system
software may therefore be made without informed advice on the consequences for
the software of these decisions.

Our experience of working with industry on systems engineering projects has
convinced us that these issues are very important. While it is clearly essential to educate
students in how to solve software problems, we believe that it is equally important to
sensitise students to the reasons why these problems arise. We have therefore
broadened the scope of our courses to include systems as well as software engineering.

 In this paper, I start by discussing what is meant by systems engineering then go on to
describe how we have integrated it into our computer science course. The material
covered in specific systems engineering courses is described and I explain how we
gained the unexpected side effect of an improved platform for discussing ethical and
professional issues. Finally, I reflect on some of the difficulties which we have
encountered in introducing this new course and how successful our approach has been.
The paper is a report of educational experience rather than research. We could not find
any other papers in the software engineering or the systems engineering literature which
covered the relationships between system engineering education and software
engineering education. An informal survey of computer science courses (based on web
browsing and searching) showed that systems engineering was rarely covered in
computer science courses.
Our approach is, therefore, largely based on our own understanding of systems
engineering problems and feedback from industry about some of the difficulties which
they have in integrating computer science graduates into their development teams. We
appear to be pioneers and, inevitably, we have got some things wrong. Our goal in
writing this paper is, therefore, to present our case to the community and to stimulate
discussion about possible ways in which software engineering education might develop
in the next century.

What do we mean by ‘systems engineering’?

The term system in everyday English is used when we want to refer to something as a
whole rather than as a collection of parts. We may, therefore, talk about the American
‘system’ of government, the Communist ‘system’, a ‘system’ for teaching reading, a
baggage handling ‘system’, a Unix ‘system’, an IBM ‘system’, and so on. Normally,
we use context and our background knowledge to sort out what we really mean by
‘system’ in these different usages.
Because of the different ways in which the term ‘system’ is used, there is scope for
misunderstanding about what we mean by ‘systems engineering’. In essence, the type
of systems which we are interested in are socio-technical software-intensive systems.
These are systems where some of the components are software-controlled computers
and which are used by people to support some kind of business or operational process.
Systems, therefore, always include computer hardware, software which may be
specially designed or bought-in as off-the-shelf packages, policies and procedures and
people who may be end-users and producers/consumers of information used by the
system. Socio-technical systems normally operate in a ‘systems-rich’ environment
where different systems are used to support a range of different processes. Figure 1
shows some examples of socio-technical systems and contrasts these with other types
of system which may be complex but which we do not consider to be socio-technical
systems.

Socio-technical software intensive
systems

Other types of system

Air-traffic control system Real-time image enhancement system for a radar
display

Insurance claims processing system Spreadsheet
Travel booking system Flight database
Automated packaging system Conveyor belt
Company communication system Telephone exchange switch

Figure 1 Different types of system

The critical difference between the different types of system shown in Figure 1 is that,
for socio-technical systems, people, policies and processes of use are part of the
system. Socio-technical systems are not just technological artefacts but also involve
people who may make mistakes, who will all have different goals, who will make
mistakes and behave inconsistently, etc.

Students undertaking computer science and software engineering courses are often
techno-centric and cannot see beyond technology to the effects of that technology in
use. Our rationale for considering socio-technical systems is that we believe that most
systems engineering problems arise because of unexpected interactions between
hardware, software and people and we wish to focus our students’ attention on these
interactions.
In our context, therefore, ‘systems engineering’ is the activity of understanding,
specifying, designing, integrating, testing and deploying socio-technical systems. It is
mostly concerned with coarse-grain abstractions and the overall properties which
emerge when these abstractions are combined into a system. Hardware and software
must be considered but, equally, systems engineering must also be concerned with
human, organisational and political problems which are major influences on almost all
large systems.

Introducing systems engineering in a computer science course

The majority of systems engineering courses which are currently offered are graduate
courses which have evolved from ‘traditional’ engineering courses such as courses in
mechanical and electrical engineering. These courses usually include an element of
software engineering but their focus is on hardware issues and overall problems with
systems hardware such as packaging, vibration and electro-magnetic compatibility.
It is neither appropriate nor realistic to introduce this model of systems engineering into
a computer science course. Indeed, I argue that this model of systems engineering
where software is peripheral rather than central is outdated given the critical role of
software in large, complex systems. There is a need for ‘traditional’ systems
engineering courses to evolve so that they are more concerned with software and human
issues.
Our goal is to sensitise students to the problems of systems engineering and to help
them expand their perspective so that they can think in terms of systems and not just
software. We want to give students enough background that they can get involved in
the systems engineering process and to learn to think in terms of systems as a whole
and not just about the software in these systems.
Before going on to discuss how we achieve this, we need to introduce our overall
course structure and discuss, more specifically, how this has changed to accommodate
systems engineering courses. At Lancaster, departments have a great deal of flexibility
in designing course structures ranging from a very flat structure with many options to a
hierarchical model where students have very little choice. The computer science course
is an example of this latter type of structure where the majority of topics are core topics
and must be taken by all students. Our computer science course is structured around
three themes with practical project work cutting across and integrating these themes
(Figure 1). Students must take 7 courses from each theme plus three further options.

Fundamentals
of

computer
science

Computer
systems

Systems and
software

engineering

Group project work

Individual project work

Figure 2 Course structure

In the fundamentals theme we cover topics such as programming in Java, algorithms,
databases, formal languages, programming languages and compiler design. In the
computer systems theme we cover operating systems, computer systems architecture,

communications and distributed systems. High-level hardware design is also covered in
this stream although this is not an important component of our course.
Within the systems and software engineering theme, there are four courses which are
clearly software engineering courses and two courses which are systems engineering
courses. There are three other courses which are primarily concerned with software
issues but where we introduce, where possible, broader issues of systems engineering.
Figure 3 shows the courses which we offer in this theme:

Software engineering Software and systems
engineering

Systems engineering

Program and data structure
design

Interactive systems engineering Software-intensive systems
engineering

Introduction to software
engineering

System requirements
engineering

Critical systems engineering

Software design Project management
Formal software specification

Figure 3 Systems and software engineering courses

The software engineering courses in the left-hand column are fairly standard courses
based around information hiding, the software process, object-oriented design and
formal specification in Z. The courses in the middle column cover topics such as user
interface models and user interface programming, the requirements engineering process
and methods for requirements engineering, configuration management, cost and
schedule estimation and process improvement. These courses clearly have a bias
towards software engineering but, wherever appropriate, we broaden the discussion to
include systems engineering issues.
In the remainder of this paper, we will focus on the courses at the right of Figure 3
namely software-intensive systems engineering and critical systems engineering. These
are the courses which are least likely to be familiar to readers. The course on software-
intensive systems engineering is a prerequisite for the critical systems course.

Software-intensive systems engineering

This is the first course that students encounter in the systems and software engineering
stream where we don’t simply concentrate on software issues. Students taking this
course have already taken courses in program and data structure design, introductory
software engineering and software design. In introducing the course, we thought
carefully about what we were trying to achieve and came to the conclusion that the
fundamental goal of the course was what Checkland [4] calls systems thinking. That is,
we wanted to expand the horizons of students so that they thought of problem-solving
in systems and not just in software terms. When faced with a problem situation, we
wanted them to be able to think critically about the problem as well as the possible
solutions to the problem.
This was our principal goal for the course but, in addition, we wished to cover specific
activities which consume a great deal of resources in the systems engineering process.
In particular, we felt it was important to discuss system procurement or acquisition and
system integration. These are critically important activities yet there is little or no
teaching material available and they are not covered in most software engineering
courses.
 The current course involves 4 hours of class contact per week for 5 weeks and is
structured into two major parts which focus on systems engineering problems and
solutions (12 hours) and on systems engineering processes (8 hours).

Systems engineering problems and solutions
In this part of the course, we introduce the idea of complex, software-intensive systems
and the process of systems engineering. We discuss where systems engineering and
software engineering are comparable and where they are distinct. In line with our
objective of encouraging students to develop ‘systems thinking’ skills, we discuss the
analysis of problems and solution strategies and the derivation of high-level system
architectures.
The particular topics which are discussed are:

• Introduction to systems engineering: Socio-technical systems and the role of
systems in organisations. Business goals and business processes. System

decomposition - sub-systems and components. An introduction to the systems
engineering process and a comparison with the software process.

• Designing computer-based systems: Problem analysis and understanding including
relationships with strategic goals, stakeholder identification, alternative solution
strategies, winner and loser analysis. Feasibility studies including systems
comparison, operational constraints, technology assessment, legacy system and
process compatibility and cost-benefit analysis. System specification including
hardware/software/process trade-offs, sub-system identification and architectural
design specification.

To illustrate these topics, we base the course around a major case study which also
serves as a source of practical examples for the students. This case study is a road
pricing system which has been proposed as a possible solution to the problems in the
UK of growing traffic congestion. In Appendix 1, we include the initial description of
the system which is distributed to students. In short, we envisage that users of
motorways (in US terms, these are roughly comparable to freeways) pay according to
distance travelled with fees collected by a computer-based system. It is a requirement
that the system should be based on non-stop operation (that is, no stopping at toll gates)
and that it should be installed and operated by a private company rather than central or
local government.
This is a particularly good example for this part of the course for a number of reasons:

• All students have had experience of traffic congestion and can understand the
domain of operation of the system.

• It is a technically challenging system to develop yet the individual technologies
required to develop system components are now available.

• It provides a basis for general problem discussion (is the real problem the
development of the system or traffic congestion, what are alternative ways to tackle
traffic congestion, etc.)

• The high-level architecture of possible solutions is fairly simple and can be
understood by students.

• Performance estimates based on traffic analyses may be illustrated.

• There are significant social and political issues associated with this system such as
security and privacy and the impact of the system on local and national economies
which can be discussed.

Systems engineering processes
Students are introduced to the systems engineering process in the first part of the course
and, in this component, we look in more detail at two of the activities in this overall
process. Other activities such as requirements engineering are covered in other courses.
We decided to cover systems acquisition and systems integration and deployment
because of their critical importance in the systems engineering process and because
students did not encounter any comparable topics elsewhere in our course.
The particular topics which we cover in these courses are:

• Systems acquisition: Custom designed and off-the-shelf systems (COTS). The
different acquisition processes for these different types of system. Product
selection. Supplier assessment and management. Legal and contractual issues.
Intellectual property.

• Systems integration and deployment: The systems integration process. Classes of
integration problem (management problems, interfacing problems, configuration
problems). System testing, stress testing and acceptance testing. Systems
installation planning. Physical, technical and human problems arising during
systems installation.

Again, we use a case study to illustrate different aspects of the course and as a source of
student problems. The road pricing system is too complex and too far away from the
immediate experience of students for this part of the course so we have invented a case
study based on a virtual Hellenic museum (see Appendix 1). This is a system involving
the creation of a system which links museums in the UK and in Greece and which
offers visitors a range of virtual museum experiences. We chose this partly because we
have a significant number of Greek students but also because it is a rich source of
examples of the real procurement and integration problems which can arise:

• It can be created using off-the-shelf components but there are technical problems in
acquiring and integrating components from different manufacturers.

• It involves different organisations from different cultures so problems of interacting
procurement processes can be discussed.

• The human problems of introducing such a system into a traditionally conservative
environment can be discussed.

• There are problems in testing such a system (how do you test a virtual world?) and
in establishing an acceptance test which clearly demonstrates that the system is
acceptable.

A general criticism of this course might be that it focuses on problems and not
techniques for solving these problems. It does not give students a conceptual toolbox
for designing complex systems. One reason for this is that we don’t have enough time
to cover methodologies such as Soft Systems Methodology [5] or Contextual Inquiry
[6] which are applicable when designing socio-technical systems.
However, even with more time, we would still adopt a problem focus in this course.
We think that too many software engineering and computer science courses focus
exclusively on ‘neat solutions’ such as object-oriented design or formal system
specification. These often don’t take into account the complex and messy reality of the
real world. We believe that our concentration here on wicked problems [7] with no
single or simple solution helps students to develop their critical faculties and to get some
insight into the limitations of the techniques which we cover elsewhere in our course.

Critical systems engineering

This course follows the course on software-intensive systems engineering which
introduces the problems and difficulties of systems engineering. Here we focus on
specific techniques which may be used for the development of systems which are
safety, mission or business critical. Again, we take a systems and not just a software
focus although there is more emphasis on software in this course.
The course has more time available (30 hours over 10 weeks) than the software-
intensive systems engineering course so a more detailed study of problems and
techniques which may be applied to solve these problems is possible. We structure the
course into 3 themes - real time control systems (8 hours), safety-critical systems (10
hours) and systems reliability (12 hours). The topics covered in each of these themes
are:

1. Real-time control systems Properties and architecture of real-time systems. Timing
analysis and specification. Hardware/software trade-offs. Real-time software
design.

2. Safety-critical systems Basic principles of safe operation. Techniques for hazard
analysis and safety specification. Risk assessment and risk minimisation. Human
error classification and designing for minimal error operation. The safety-critical
systems development process. Safety verification.

3. Systems reliability The relationship between reliability and safety, reliability
specification and metrics. Reliability measurement and growth modelling. Fault-
tolerant systems architectures. Techniques for software fault avoidance and fault
tolerance.

As well as being important topics in their own right for software engineers, we have
included these themes in this course because they help students develop their
understanding of systems engineering concepts. For example, we can discuss the
notions of safety and reliability from a systems perspective and can show that software
can be used to cope with failures in other parts of the system and, conversely, how
software failures can be tolerated by designing safeguards into the system as a whole.
The material in the course is supported by a major case study which has been drawn
from an industrial research project in which we were involved [8]. This is a study of a
train protection system for commuter trains on busy suburban lines. This system will
stop a train if it passes a red signal or if the speed limit for a track segment is exceeded.
This system is ideal as a case study for this course because it is:

• within the experience of students - most of them have travelled on suburban trains,

• a complex socio-technical system with different stakeholders and operational
processes,

• clearly a real-time system with potential for software hardware trade-offs,

• a safety-critical system where system failure can result in an accident,

• a system with specific reliability and availability requirements which are separate
from the safety requirements. Because of the high density of traffic, it is important
that the system does not stop trains unnecessarily.

A current weakness of the course is that it does not include any coverage of security
issues which are becoming increasingly important for software-intensive systems. This
is partly due to lack of time and partly due to my lack of knowledge in this area. We
hope to revise the course in the near future to include some security issues.

Ethical and professional issues

Along with many other universities, we have recognised the importance of exposing
our students to ethical and professional issues as an integral part of their education.
Previously, we addressed this in a rather disjointed way with class discussions on
ethics and professionalism in various courses but with no links between them.
However, when we re-designed the course to give more emphasis to systems
engineering, we found that we had created a structure which allowed us to discuss
ethical and professional issues in a much more coherent way.
The reason for this is that ethical issues in a software context are unreal. Issues such as
the responsibilities of software engineers to ensure safety and privacy cannot simply be
confined to software. Software on its own cannot injure people, damage property or
reveal personal details to snoopers. It is only when it is embedded in a system that
problems arise and these problems are often related to the social and organisational
environment in which the system is developed and used.
Covering these issues in a systems context where political and organisational factors are
discussed is much easier. Furthermore, as software acquisition is an inherent part of the
course, it is natural to discuss topics such as privacy, data protection and software
contracts as part of this course.
Examples of topics which are covered are:

1. Privacy and security are discussed in conjunction with the road pricing system
example. This is very appropriate as clearly any system which maintained records
about a car’s position could be used for tracking the movement of individuals.

2. Contracts, public health and safety and relationships between employers and
employees are discussed in conjunction with the virtual museum system. Issues of
safety are important as it is a VR system used by the general public, it involves
contractual relationships between different partners and is developed by freelance
staff who may work for different employers in the same application domain.

3. Safety and professionalism are discussed in conjunction with a discussion of the
development of fly-by-wire software for civil aircraft. This is illustrated using a
video tape of a television documentary on problems with this type of aircraft.

We do not have separate lectures on ethical and professional issues. Rather, we
integrate discussion of these issues with other lectures and, in particular, with class
discussions about the practical coursework associated with each of the case studies.

Challenges and problems

The challenges which we faced in introducing these changes to our software
engineering course fall into two categories:

1. Pedagogic challenges - how do we present the material in a way which is relevant to
students and potential employers and, at the same time, maintains academic rigour.

2. Practical challenges - how do we provide students with appropriate teaching
material and practical experience.

The first of these challenges is particularly difficult. Systems engineering is a broad
rather than a deep topic and it is difficult to avoid discursive teaching which does not
lead to any real understanding. While students might find a selection of ‘war stories’
entertaining, these would do little to develop their abilities to think in systems terms and
would not have the required academic rigour which we expect from advanced courses
in a computer science degree scheme.
We address this issue in two ways:

1. The use of case studies, as already discussed, allows us to link different material in
the course and illustrate its relevance to reality. Relating the taught material to these
case studies and following this with case study related coursework does, we
believe, help students develop the ability to think in systems terms - the primary
goal of our course.

2. We avoid discussing specific solutions which have been used in specific systems
and always argue that the identified problems have several possible solutions. In
our experience, students find it very difficult to generalise from a specific solution
to a problem and their understanding of the problem is limited to understanding the
techniques used in its solution. We deliberately spend most time discussing systems
engineering problems. These are timeless and will be similar in 10 or 20 years time.
The same cannot be said for many specific techniques which are currently covered
in computer science courses.

The most significant practical difficulty which we faced when introducing systems
engineering concepts into our courses was the lack of available teaching material. The
only book in this area which focuses on software-intensive systems [9] includes useful
descriptions of various aspects of systems engineering but is written for the practitioner
rather than the student. There are various papers which we make available to students
[10] [11] but, again, these have not been written for undergraduate students. With a
small number of exceptions such as Leveson’s book on safety-critical systems [12]
most papers concentrate on software and not broader systems issues. In some areas,
such as systems acquisition and integration, we could not find any material at all which
was not written from a US Government or military perspective.
To address the problem of lack of teaching material, we had no alternative but to create
our own notes based on what material there is available and our experience of systems
engineering. We supplement these, wherever possible, by recommending various
papers as additional reading. Students are issued with paper copies of the notes and also
have access to electronic versions in MS Powerpoint format1.

1 Currently, these notes are only available on our Departmental Intranet. However, it is my intention to
make them more widely available through the WWW. The URL will be included in the final version of
the paper.

A problem which we currently face is the difficulty of supporting practical skill
development. It is hard enough to identify realistic software projects for students let
alone systems engineering projects involving hardware, software and people. Clearly,
the scope here is limited but we hoped to give students some laboratory experience in
systems integration and in reliability and safety-critical systems development
We have not yet found a good way to do this. One idea which we had to support
practical work in systems integration was to take some PCs apart and ask students to
put them together again in a particular hardware/software configuration. Our system
manager was not enamoured with this idea as he would have to sort out the inevitable
problems. Consequently, we decided that, rather than use machines which were shared
with other courses, we would use PCs which had been replaced and which were no
longer needed in our laboratories. This idea foundered because of the difficulties of
obtaining hardware for these machines (the cards were no longer stocked) and because
our programming language had changed. Students didn’t know the languages for which
we had compilers and we couldn’t buy compilers for the languages which the students
knew.
The difficulties which we face in trying to provide some practical experience in reliable
and safety-critical systems development is developing this type of system takes a long
time. Rigorous methods are used and, even for small systems, the time taken is more
than the single semester which is available for the course. Furthermore, it is difficult to
find small, self-contained systems in this area which do not require very specialised
domain knowledge. We have some ideas of developing a set of simulators for an
autonomous vehicle which would provide a basis for practical work but these have not
yet come to fruition.
Because of the difficulties of setting meaningful practical work, student coursework is
based around paper-based design exercises. The case studies used in our course are
initially presented as problem descriptions. Different aspects of these problems are used
to illustrate the course material and students are set coursework related to these
problems. Some examples of coursework which we set are:

1. Students are asked to design a logical and physical architecture for the road pricing
system showing major hardware and software sub-systems and discussing possible
physical organisation of the system.

2. Students are asked to write a short essay on the topic of privacy and computer
systems and to illustrate this using examples drawn from the road pricing system.

3. Students are asked to complete a system procurement exercise for the museum
system and to define equipment requirements and costs for museums in the
consortium.

4. Students are asked to assess the performance requirements for the train protection
system based on the train speed and the cycle time of the on-board train control
system.

Students generally agree that, after they have completed the exercises, they have been
valuable learning experiences. They find the coursework to be challenging but also to
be disturbing. They don’t have any methods which they can use to evaluate the
solutions they propose yet they know intuitively that their solutions are inadequate in
some respects. They get no sense of closure in that they there is no clear end-point to
the work as there is when a program has to be developed.
Educationally, we believe that this is valuable experience. This situation reflects reality
where trade-offs and compromises have to be made, resource and schedule constraints
define when one phase of the work stops and the next phase begins, there are known
problems with systems, etc. However, the instructor must recognise that this is a new
experience for students who are used to tractable problems with simple solutions. We
have found that students must be given constant reassurance (e.g. by commenting on
drafts of their work) throughout the course that they are doing the right thing.

Conclusion

This paper has presented an argument that students studying software engineering
should be exposed to broader systems issues to help them understand the context in
which software operates. We have described how we have designed the software
engineering component of a computer science degree to include courses on computer-
based systems engineering. These courses are based around case studies and cover
topics such as systems design, acquisition and integration, real-time systems, and
system safety and reliability.
As well as providing students with a better understanding of real-world problems, we
believe that the integration of software and systems engineering in our course has had
two further positive benefits:

1. We can be proud to be software engineers The systems engineering focus allows
us to explain why software problems occur and it means that we can present
software engineering as a way to solve systems problems rather than as a problem
in its own right. The message that software is a problem has always seemed to us
to be demotivating for students. We believe it is educationally much better to present
the subject in a positive rather than in a negative way.

2. Human, social and political factors are made real to students Introducing systems
engineering shows students that there is not necessarily a programming solution to
all problems and that non-technical influences are the important influences in real
systems engineering projects.

The course changes were introduced in 1996/97 and the first group of students who
were exposed to these systems engineering courses have just graduated. With a small
number of exceptions, the student feedback to the courses was very positive. The few
employers that we have consulted were also positive about our course changes.
Although we have a fundamental problem in introducing practical laboratory work, so
far we believe that our integration of systems and software engineering has been fairly
successful. In short, we believe that introducing systems engineering makes our
students better software engineers.

References

[1] Pressman, R.S., Software Engineering: A Practitioner's Approach, 4th
edition. 1996, New York: McGraw-Hill.

[2] Gibbs, W.W., “ Software's Chronic Crisis”. Scientific American, 1994.
271(3): 72-81.

[3] Swartz, A.J., “ Airport 95: Automated Baggage System?”. ACM Software
Engineering Notes, 1996. 21(2): 79-83.

[4] Checkland, P., Systems Thinking, Systems Practice. 1981, Chichester:
John Wiley & Sons.

[5] Checkland, P. and Scholes, J., Soft Systems Methodology in Action. 1990,
Chichester: John Wiley & Sons.

[6] Holtzblatt, K. and Beyer, H., “ Making Customer-Centred Design Work for
Teams”. Comm. ACM, 1993. 36(10): 93-103.

[7] Rittel, H. and Webber, M., “ Dilemmas in a General Theory of Planning”.
Policy Sciences, 1973. 4: 155-69.

[8] Sommerville, I., Sawyer, P., and Viller, S. “Viewpoints for requirements
elicitation: a practical approach”. To appear in Proc. Int. Conf. on Requirements
Engineering. 1998. Colorado.

[9] Thomé, B., ed. Systems Engineering: Principles and Practice of Computer-
based Systems Engineering. C. Tully and I. Pyle. 1993, J. Wiley and Sons:
Chichester, UK.

[10] Andriole, S.J. and Freeman, P.A., “ Software systems engineering: the
case for a new discipline”. BCS/IEE Software Eng. J., 1993. 8(3): 165-78.

[11] Thayer, R.H., “Software System Engineering: An Engineering Process”, in
Software Requirements Engineering, R.H. Thayer and M. Dorfmann, Editors. 1997,
IEEE Press: Los Alamitos, Ca.

[12] Leveson, N.G., “ Software Safety in Embedded Control Systems”. Comm.
ACM, 1991. 34(2): 34-46.

Appendix 1

This appendix includes the problems descriptions which are handed out to students
during the systems engineering course and which are used as the basis for the case
studies. These are deliberately written in a high-level way and we know that we are
incomplete. This lack of detail means that different student groups have the flexibility to
tackle the coursework in different ways.

Problem description - A road pricing system
A general problem which we face in the UK is that the current rate of growth of private
car ownership is unsustainable. We must find a way of encouraging people to make
more use of public rather than private transport.
We have a fairly extensive motorway network and a very high proportion of personal
and goods transport uses this network. Significant investment is needed to maintain the
motorway network in good condition.
It is government policy to slow down and (ultimately) reverse the growth in private car
ownership. It has been proposed that the motorway network should not be
significantly extended and that a policy of ‘road pricing’ should be introduced where
users of the motorway network pay according to the distance travelled. It is also
Government policy that such an initiative should be based on private finance and the
system should be procured and managed by private companies rather than government
organisations.
Of course, road pricing in some form is not a new idea. The French motorway system
is a toll-based system and tolls are also payable on some US roads. However,
introducing a system based on toll gates where payment is made is not acceptable in this
case for two reasons:

1. The traffic density and patterns on UK motorways is so high that any system which
required drivers to stop and pay tolls would inevitably create unacceptable traffic
congestion and delays.

2. Toll-based systems have relatively high running costs because completely automatic
operation of systems where payments must be made directly is not possible.

An alternative to a toll-gate based system is a completely automated road pricing system
which detects the presence of vehicles and automatically levies a charge when they enter
a motorway segment. This is clearly a complex computer-based system which involves
roadside vehicle detection systems, charging databases and mechanisms for drivers to
pay for their road usage.
The following assumptions may be made about the design of this system.

1. Individual vehicle transmitters allowing vehicles to be individually identified at
current traffic volumes are available at reasonable cost.

2. While you can expect more than 95% of vehicles using the motorway to have such
transmitters, a significant number of vehicles won’t be equipped and some
mechanism must be devised for charging these vehicles for road use.

3. Vehicle number plates can be recognised using current techniques of image
analysis.

4. It is not an absolute requirement that the system should be continually available.
Loss of service will mean some loss in revenue but so long as revenue is at least
95% of the possible maximum this is acceptable.

5. Variable pricing may be used to try to even out the load on the motorway network.
For example, travelling at peak hours may be more expensive than travelling at
other times of the day.

Problem description - A virtual Hellenic museum
A consortium of museums wish to collaborate to produce a ‘Virtual Museum of Ancient
Greece’. This is a multimedia system which provides historical information about the
culture and artefacts of Ancient Greece, information about existing Greek antiquities,
information about archaeological digs to recover information, etc. The consortium
includes museums in both the UK and in Greece which have important collections of
Greek antiquities.
The key aims of the project are:

1. To produce a multimedia database which includes information about the major items
in the collections of the participating museums. This is intended for use by casual
users in any of the museums.

2. To allow scholars in any of the museums to have access to the complete catalogues
in all other museums and to provide a means of communicating with museum
curators and historians in the museums.

3. To provide a number of virtual reality simulations of life in Ancient Greece so that
museum users can gain an impression of life in these times.

The curators of the museums are attracted by this idea but do not have any detailed
knowledge of the technology to be used. Different museums have different budgets for
equipment and software ranging from £12, 000 to £250, 000. The museums with the
lowest budgets require at least 2 terminals which provide access to the system and do
not require (but would obviously like) virtual reality simulations. Other museums
require either 6 or 12 terminals with access to the system. Some of these might be used
for virtual reality simulations but, if appropriate, additional virtual reality systems may
be provided.
It is anticipated that each museum will prepare data for the project from its own
collections. In addition, one person will be employed for 1-2 years to procure and set
up the system.

Problem description - A train protection system
To increase the safety of its system, a train operating company has decided that it
wishes to install a train protection system in its commuter trains which carry passengers
from the suburbs to the centre of a major city. A train protection system is a safety
system which protects against driver error. It will bring the train to a halt under the
following circumstances:

1. When the train exceeds the speed limit for the current segment of track.

2. When the train fails to stop at a danger signal or passes a caution signal at too high a
speed.

The train protection system is closely integrated with the railway signalling system. The
signalling system is based on the notion that the railway line is split into a number of
track segments with signalling equipment controlling the entrance to each track
segment. Safety in the system is assured if it is impossible for there to be more than one
train in a track segment at one time and maintaining this constraint is the fundamental
objective of the signalling system.
 However, the designers of the signalling system must also take into account the fact
that trains cannot stop instantaneously and that collisions could conceivably occur when
trains are signalled in different segments but the braking distance of a train is such that it
could run into the train in front. Therefore, track segments may have additional signals
and may have a specified speed limit which depends on the length of the track segment
and the specific segment characteristics such as the gradient, curvature, etc.
The train protection system consists of a number of sub-systems:

1. On-board hardware and software which is installed on the train and which is
integrated with the existing train control system.

2. Trackside equipment which is controlled by the signalling system and which sends
the signal status and the track segment speed limit to the on-board system.

3. A signalling centre system which receives signalling information from the existing
signalling system and communicates with the trackside train protection equipment.

A constraint on the development of this system is that there already exist systems for
signalling and train control and the train protection system must be installed without
disruption to these systems.

