
MIDDLEWARE1
David E. Bakken2

Washington State University

Middleware is a class of software technologies designed to help manage the complexity and heterogeneity inherent in
distributed systems. It is defined as a layer of software above the operating system but below the application program
that provides a common programming abstraction across a distributed system, as shown in Figure 1. In doing so, it
provides a higher-level building block for programmers than Application Programming Interfaces (APIs) such as
sockets that are provided by the operating system. This significantly reduces the burden on application programmers
by relieving them of this kind of tedious and error-prone programming. Middleware is sometimes informally called
“plumbing” because it connects parts of a distributed application with data pipes and then passes data between them.

Middleware frameworks are designed to mask some of the kinds of heterogeneity that programmers of distributed
systems must deal with. They always mask heterogeneity of networks and hardware. Most middleware frameworks
also mask heterogeneity of operating systems or programming languages, or both. A few such as CORBA also mask
heterogeneity among vendor implementations of the same middleware standard. Finally, programming abstractions
offered by middleware can provide transparency with respect to distribution in one or more of the following
dimensions: location, concurrency, replication, failures, and mobility.

The classical definition of an operating system is “the software that makes the hardware useable.” Similarly,
middleware can be considered to be the software that makes a distributed system programmable. Just as a bare
computer without an operating system could be programmed with great difficulty, programming a distributed system is
in general much more difficult without middleware, especially when heterogeneous operation is required. Likewise, it
is possible to program an application with an assembler language or even machine code, but most programmers find it
far more productive to use high-level languages for this purpose, and the resulting code is of course also portable.

1 To appear in Encyclopedia of Distributed Computing, Kluwer Academic Press, 2003.
2 Contact information: School of Electrical Engineering and Computer Science; PO Box 642752; Washington State
University; Pullman, WA 99164-2752 USA; bakken@eecs.wsu.edu; http://www.eecs.wsu.edu/~bakken.

Distributed
Application

Operating
System

Operating System API

Comm. Processing Storage

Middleware

Middleware API

Distributed
Application

Operating
System

Operating System API

Comm. Processing Storage

Middleware

Middleware API

Network

Host 1 Host 2

Distributed
Application

Operating
System

Operating System API

Comm. Processing StorageComm. Processing Storage

Middleware

Middleware API

Distributed
Application

Operating
System

Operating System API

Comm. Processing StorageComm. Processing Storage

Middleware

Middleware API

NetworkNetwork

Host 1 Host 2

Figure 1: Middleware Layer in Context

Categories of Middleware
There are a small number of different kinds of middleware that have been developed. These vary in terms of the
programming abstractions they provide and the kinds of heterogeneity they provide beyond network and hardware.

Distributed Tuples
A distributed relational databases (see Distributed Databases) offers the abstraction of distributed tuples, and are the
most widely deployed kind of middleware today. Its Structured Query Language (SQL) allows programmers to
manipulate sets of these tuples (a database) in an English-like language yet with intuitive semantics and rigorous
mathematical foundations based on set theory and predicate calculus. Distributed relational databases also offer the
abstraction of a transaction. Distributed relational database products typically offer heterogeneity across programming
languages, but most do not offer much, if any, heterogeneity across vendor implementations. Transaction Processing
Monitors (TPMs) are commonly used for end-to-end resource management of client queries, especially server-side
process management and managing multi-database transactions.

Linda (see Linda) is a framework offering a distributed tuple abstraction called Tuple Space (TS). Linda’s API
provides associative access to TS, but without any relational semantics. Linda offers spatial decoupling by allowing
depositing and withdrawing processes to be unaware of each other’s identities. It offers temporal decoupling by
allowing them to have non-overlapping lifetimes.

Jini is a Java framework for intelligent devices, especially in the home. Jini is built on top of JavaSpaces, which is
very closely related to Linda’s TS.

Remote Procedure Call
Remote procedure call (RPC; see Remote Procedure Calls) middleware extends the procedure call interface familiar to
virtually all programmers to offer the abstraction of being able to invoke a procedure whose body is across a network.
RPC systems are usually synchronous, and thus offer no potential for parallelism without using multiple threads, and
they typically have limited exception handling facilities.

Message-Oriented Middleware
Message-Oriented Middleware (MOM) provides the abstraction of a message queue that can be accessed across a
network. It is a generalization of the well-known operating system construct: the mailbox. It is very flexible in how it
can be configured with the topology of programs that deposit and withdraw messages from a given queue. Many
MOM products offer queues with persistence, replication, or real-time performance. MOM offers the same kind of
spatial and temporal decoupling that Linda does.

Distributed Object Middleware
Distributed object middleware provides the abstraction of an object that is remote yet whose methods can be invoked
just like those of an object in the same address space as the caller. Distributed objects make all the software
engineering benefits of object-oriented techniques encapsulation, inheritance, and polymorphism available to the
distributed application developer.

The Common Object Request Broker Architecture (CORBA; see Common Object Request Broker Architecture) is a
standard for distributed object computing. It is part of the Object Management Architecture (OMA), developed by the
Object Management Group (OMG), and is the broadest distributed object middleware available in terms of scope. It
encompasses not only CORBA’s distributed object abstraction but also other elements of the OMA which address
general purpose and vertical market components helpful for distributed application developers. CORBA offers
heterogeneity across programming language and vendor implementations. CORBA (and the OMA) is considered by
most experts to be the most advanced kind of middleware commercially available and the most faithful to classical
object oriented programming principles. Its standards are publicly available and well defined.

DCOM is a distributed object technology from Microsoft that evolved from its Object Linking and Embedding (OLE)
and Component Object Model (COM). DCOM’s distributed object abstraction is augmented by other Microsoft
technologies, including Microsoft Transaction Server and Active Directory. DCOM provides heterogeneity across
language but not across operating system or tool vendor. COM+ is the next-generation DCOM that greatly simplifies
the programming of DCOM. SOAP is a distributed object framework from Microsoft that is based on XML and
HyperText Transfer Protocols (HTTP). Its specification is public, and it provides heterogeneity across both language
and vendor. Microsoft’s distributed object framework .NET also has heterogeneity across language and vendor among
its stated goals.

Java has a facility called Remote Method Invocation (RMI) that is similar to the distributed object abstraction of
CORBA and DCOM. RMI provides heterogeneity across operating system and Java vendor, but not across language.
However, supporting only Java allows closer integration with some of its features, which can ease programming and
provide greater functionality.

Marketplace Convergence of the Concepts
The categories of middleware above are blurred in the marketplace in a number of ways. Starting in the late 1990s,
many products began to offer APIs for multiple abstractions, for example distributed objects and message queues,
managed in part by a TPM. TPMs in turn often use RPC or MOM as an underlying transport while adding
management and control facilities. Relational database vendors have been breaking the relational model and the strict
separation of data and code by many extensions, including RPC-like stored procedures. To complicate matters further,
Java is being used to program these stored procedures. Additionally, some MOM products offer transactions over
multiple operations on a message queue. Finally, distributed object systems typically offer event services or channels
which are similar to MOM in term of architecture, namely topology and data flow.

Middleware and Legacy Systems
Middleware is sometimes called a “glue” technology because it is often used to integrate legacy components. It is
essential for migrating mainframe applications that were never designed to interoperate or be networked to service
remote requests. Middleware is also very useful for wrapping network devices such as routers and mobile base stations
to offer network integrators and maintainers a control API that provides interoperability at the highest level.

Distributed object middleware is particularly well-suited for legacy integration, due to its generality (described below).
In short, it provides a very high lowest common denominator of interoperability. CORBA, in particular, is typically
used for this because it supports the most kinds of heterogeneity and thus allows the legacy components to be used as
widely as possible.

Programming with Middleware
Programmers do not have to learn a new programming language to program middleware. Rather, they use an existing
one they are familiar with, such as C++ or Java. There are three main ways in which middleware can be programmed
with existing languages. The first is where the middleware system provides a library of functions to be called to utilize
the middleware; distributed database systems and Linda do this. The second is through an external interface definition
language (IDL; see Interface Definition Language). In this approach, the IDL file describes the interface to the remote
component, and a mapping from the IDL to the programming language is used for the programmer to code to. The
third way is for the language and runtime system to support distribution natively; for example, Java’s Remote Method
Invocation (RMI).

Middleware and Layering
There may be multiple layers of middleware present in a given system configuration. For example, lower-level
middleware such as a virtually synchronous atomic broadcast service (see Virtual Synchrony) can be used directly by
application programmers. However, sometimes it is used as a building block by higher-level middleware such as
CORBA or Message-Oriented Middleware to provide fault tolerance or load balancing or both.

Note that most of the implementation of a middleware system is at the “Application” Layer 7 in the OSI network
reference architecture, though parts of it is also at the “Presentation” Layer 6 (see Network Protocols). Thus, the
middleware is an “application” to the network protocols, which are in the operating system. The “application” from the
middleware’s perspective is above it.

Middleware and Resource Management
The abstractions offered by various middleware frameworks can be used to provide resource management in a
distributed system at a higher level than is otherwise possible. This is because these abstractions can be designed to be
rich enough to subsume the three kinds of low-level physical resources an operating system manages: communications,
processing, and storage (memory and disks). Middleware’s abstractions also are from an end-to-end perspective, not
just that of a single host, which allows for a more global and complete view to a resource management system.

All middleware programming abstractions by definition subsume communications resources, but others vary in how
well they incorporate processing and storage. Table 1 depicts how well each category of middleware encapsulates and
integrates these resources. Distributed tuples offer only a limited form of processing to the client. RPC does not
integrate storage, while MOM does not include processing. Distributed objects, however, not only encapsulate but

Mideleware Category Communication Processing Storage

Distributed Tuples Yes Limited Yes

Remote Procedure Call Yes Yes No

Message-Oriented Middleware Yes No Limited

Distributed Objects Yes Yes Yes

Table 1: Middleware Encapsulation and Integration of Low-Level Resources

cleanly integrate all three kinds of resource into a coherent package. This completeness helps distributed resource
management but also makes it easier to provide different kinds of distributed transparencies such as mobility
transparency.

Middleware and Quality of Service Management
Distributed systems are inherently very dynamic, which can make them difficult to program. Resource management is
helpful, but is generally not enough for most distributed applications. Starting in the late 1990s, distributed systems
research has begun to focus on providing comprehensive quality of service (QoS), an organizing concept referring to
the behavioral properties of an object or system, to help manage the dynamic nature of distributed systems. The goal of
this research is to capture the application’s high-level QoS requirements and then translate them down to low-level
resource managers. QoS can help runtime adaptivity, something in the domain of classical distributed systems
research. But it can also help the applications evolve over their lifetime to handle new requirements or to operate in
new environments, issues more in the domain of software engineering but of crucial importance to users and
maintainers of distributed systems (see Quality of Service).

Middleware is particularly well-suited to provide QoS at an application program’s level of abstraction. Also, the
abstractions middleware systems offer can often be extended to include a QoS abstraction while still being a coherent
abstraction understandable by and useful to the programmer. Distributed object middleware is particularly well-suited
for this due to its generality in the resources it encapsulates and integrates.

Providing QoS to applications can help them operate acceptably when usage patterns or available resources vary over a
wide spectrum and with little predictability. This can help make the environment appear more predictable to the
distributed application layer, and help the applications to adapt when this predictability is impossible to achive. QoS
can also help applications be modifiable in a reasonable amount of time, because their assumptions about the
environment are not hard-coded into their application logic, and thus make them less expensive to maintain.

Middleware that includes QoS abstractions can enable these things by making an application’s assumptions about QoS,
such as usage patterns and required resources, explicit while still providing a high-level building block for
programmers. Further, QoS-enabled middleware is a high-level building block which shields distributed applications
from the low-level protocols and APIs that ultimately provide QoS. This shielding can be very helpful because these
APIs and protocols are very complicated and usually change rapidly compared to the lifetime of many distributed
applications. This decoupling of application from lower-level details is thus helpful much in the way that TCP/IP
historically has allowed applications and devices to evolve separately. Yet QoS-enabled middleware allows decoupling
while providing not only a message stream but with QoS and a high-level abstraction.

History of Middleware
The term middleware first appeared in the late 1980s to describe network connection management software, but did not
come into widespread use until the mid 1990s, when network technology had achieved sufficient penetration and
visibility. By that time middleware had evolved into a much richer set of paradigms and services offered to help make
it easier and more manageable to build distributed applications. The term was associated mainly with relational
databases for many practitioners in the business world through the early 1990s, but by the mid-1990s this was no longer
the case [1,2]. Concepts similar to today's middleware previously went under the names of network operating systems,
distributed operating systems and distributed computing environments.

Cronus was the major first distributed object middleware system (see Cronus), and Clouds (See Clouds) and Eden were
contemporaries. RPC was first developed circa 1982 by Birrell and Nelson. Early RPC systems that achieved wide use
include those by Sun in its Open Network Computing (ONC) and in Apollo’s Network Computing System (NCS). The

Open Software Foundation’s Distributed Computing Environment (DCE) included an RPC that was an adaptation of
Apollo’s that was provided by Hewlett Packard (which acquired Apollo). Quality Objects (QuO) was the first
middleware framework to provide general-purpose and extensible quality of service for distributed objects [3]. TAO
was the first major CORBA system to provide quality of service, namely real-time performance, directly in the ORB
[4].

The OMG was formed in 1989, and is presently the largest industry consortium of any kind. The Message Oriented
Middleware Association (MOMA) was formed in 1993, and MOM became a widely-used kind of middleware by the
late 1990s. In the late 1990s HTTP became a major building block for various kinds of middleware, due to its
pervasive deployment and its ability to get through most firewalls.

Further information on technologies related to middleware and on the history of middleware research projects can be
found in [5].

References
[1] P. Bernstein. “Middleware: A Model for Distributed System Services.” Communications of the ACM, 39:2,

February 1996, 86−98.

[2] A. Campbell, G. Coulson, and M. Kounavis. “Managing Complexity: Middleware Explained.” IT Professional,
IEEE Computer Society, 1:5, September/October 1999, 22−28.

[3] J. Zinky, D. Bakken, and R. Schantz. “Architectural Support for Quality of Service for CORBA Objects”, Theory
and Practice of Object Systems, 3:1, April 1997.

[4] D. Schmidt, D. Levine, and S. Mungee. “The Design of the TAO Real-Time Object Request Broker.” Computer
Communications, Elsevier Science, 21:4, April, 1998.

[5] P. Verissimo and L. Rodrigues. Distributed Systems for System Architects, Kluwer Academic Press, 2001.

Cross Reference:
Cronus see Middleware.\

Distributed Databases see Middleware.

Common Object Request Broker Architecture see Middleware.

DCOM+OLE see Middleware.

Distributed Computing Environment see Middleware.

Interface Definition Language see Middleware.

Remote Procedure Calls see Middleware.

Replicated Objects see Middleware.

Dictionary Terms:
Application Programming Interface (API)
The programming interface offered by a given layer to a layer above it (its application).

