
0018-9162/02/$17.00 © 2002 IEEE68 Computer

Software System
Engineering:
A Tutorial

S oftware systems have become larger and
more complex than ever. We can attribute
some of this growth to advances in hard-
ware performance—advances that have
reduced the need to limit a software sys-

tem’s size and complexity as a primary design goal.
Microsoft Word is a classic example: A product
that would fit on a 360-Kbyte diskette 20 years ago
now requires a 600-Mbyte CD.

But there are other reasons for increased size and
complexity. Specifically, software has become the
dominant technology in many if not most techni-
cal systems. It often provides the cohesiveness and
data control that enable a complex system to solve
problems.

Figure 1 is a prime example of this concept. In an
air traffic control system, software connects the air-
planes, people, radar, communications, and other
equipment that successfully guide an aircraft to its
destination. Software provides the system’s major
technical complexity.

The vast majority of large software systems do
not meet their projected schedule or estimated cost,
nor do they completely fulfill the system acquirer’s
expectations. This phenomenon has long been
known as the software crisis.1 In response to this
crisis, software developers have introduced differ-
ent engineering practices into product development.

Simply tracking a development project’s man-
agerial and technical status—resources used, mile-
stones accomplished, requirements met, tests
completed—does not provide sufficient feedback
about its health. Instead, we must manage the tech-
nical processes as well as its products. System engi-

neering provides the tools this technical manage-
ment task requires.

The application of system engineering principles
to the development of a computer software system
produces activities, tasks, and procedures called soft-
ware system engineering, or SwSE. Many practi-
tioners consider SwSE to be a special case of system
engineering, and others consider it to be part of soft-
ware engineering. However, we can argue that SwSE
is a distinct and powerful tool for managing the tech-
nical development of large software projects.

This tutorial integrates the definitions and
processes from the IEEE software engineering stan-
dards2 into the SwSE process. A longer version that
includes a detailed step-by-step approach for imple-
menting SwSE is available in Software Engineering
Volume 1: The Development Process, part of the
IEEE Computer Society’s “best practices series.”3

SYSTEMS AND SYSTEM ENGINEERING
A system is a collection of elements related in a

way that allows a common objective to be accom-
plished. In computer systems, these elements
include hardware, software, people, facilities, and
processes.

System engineering is the practical application of
scientific, engineering, and management skills nec-
essary to transform an operational need into a
description of a system configuration that best sat-
isfies that need. It is a generic problem-solving
process that applies to the overall technical man-
agement of a system development project. This
process provides the mechanism for identifying and
evolving a system’s product and process definitions.

Applying system engineering principles specifically to the development of
large, complex software systems provides a powerful tool for process and
product management.

Richard H.
Thayer
California State
University,
Sacramento

R E S E A R C H F E A T U R E

IEEE Std. 1220-1998 describes the system engi-
neering process and its application throughout the
product life cycle.4 System engineering produces
documents, not hardware. The documents associ-
ate developmental processes with the project’s life-
cycle model. They also define the expected process
environments, interfaces, products, and risk man-
agement tools throughout the project.

System engineering involves five functions:

• Problem definition determines the needs and
constraints through analyzing the require-
ments and interfacing with the acquirer.

• Solution analysis determines the set of possi-
ble ways to satisfy the requirements and con-
straints, analyzes the possible solutions, and
selects the optimum one.

• Process planning determines the tasks to be
done, the size and effort to develop the prod-
uct, the precedence between tasks, and the
potential risks to the project.

• Process control determines the methods for
controlling the project and the process, mea-
sures progress, reviews intermediate products,
and takes corrective action when necessary.

• Product evaluation determines the quality and
quantity of the delivered product through eval-
uation planning, testing, demonstration, analy-
sis, examination, and inspection.

System engineering provides the baseline for all
project development, as well as a mechanism for
defining the solution space—that is, the systems
and the interfaces with outside systems. The solu-
tion space describes the product at the highest
level—before the system requirements are parti-
tioned into the hardware and software subsystems.

This approach is similar to the software engineer-
ing practice of specifying constraints as late as pos-
sible in the development process. The further into the
process a project gets before defining a constraint,
the more flexible the implemented solution will be.

WHAT IS SOFTWARE SYSTEM ENGINEERING?
The term software system engineering dates from

the early 1980s and is credited to Winston W.
Royce,5 an early leader in software engineering.
SwSE is responsible for the overall technical man-
agement of the system and the verification of the
final system products. As with system engineering,
SwSE produces documents, not components. This
differentiates it from software engineering (SwE),
which produces computer programs and users’
manuals.

SwSE begins after the system requirements have
been partitioned into hardware and software sub-
systems. SwSE establishes the baseline for all project
software development. Like SwE, it is both a tech-
nical and a management process. The SwSE tech-

April 2002 69

Separation assurance
• Conflict alert
• Minimum safe altitude
 warning

Air traffic management
• Traffic management system
• En route metering

Weather data
• Central weather processor
• Low-level wind-shear
 alert system

Navigational aids
• Microwave landing system
• VORTAC (VHF omnidirectional
 range/tactical aircraft control)

VORTAC

Surveillance
• En route data link
• Airport surveillance radar
 (ASR-terminal)
• Next-generation weather radar

Communication
• National airspace data interchange network
• Ground data link
• Tower communication switching system
• Voice-switching communication system

Flight service
automation system
• Flight plan file
• Weather briefings
• Pilot reports

Remote
transmitter/

receiver

Terminal
(Tower/terminal radar

approach control)

X

Source: Northrop Grumman Information Technology
(formerly Logicon). Used with permission.

Figure 1. Air traffic
control system envi-
ronment. Software
ties the elements
of large systems
together, and is
frequently the most
complex and techni-
cally challenging
part of the system.

Code
and unit

test

Detailed
software
design

Software
subsystem

testing

Architectural
software
design

Software
requirements

analysis

System
design

System
analysis

Software
integration

testing

Software
system
testing

System
integration

testing

System
testing

System engineering

Software system
engineering

Software engineering Software engineering

70 Computer

nical process is the analytical effort necessary to
transform an operational need into

• a software system description;
• a software design of the proper size, configu-

ration, and quality;
• software system documentation in require-

ments and design specifications;
• the procedures necessary to verify, test, and

accept the finished software product; and
• the documentation necessary to use, operate,

and maintain it.

SwSE is not a job description. It is a process that
many people and organizations perform: system
engineers, managers, software engineers, program-
mers, and—not to be ignored—acquirers and users.

As large system solutions become increasingly
dependent on software, a system engineering
approach to software development can help avoid
the problems associated with the software crisis.

Software developers often overlook system engi-
neering and SwSE in their projects. They consider
systems that are all software or that run on com-
mercial off-the-shelf computers to be just software
projects, not system projects. Ignoring the systems
aspects of software development contributes to our
long-running software crisis.

SwSE and software engineering
Both SwSE and SwE are technical and manage-

ment processes, but SwE produces software com-
ponents and their supporting documentation.
Specifically, software engineering is

• the practical application of computer science,
management, and other sciences to the analy-
sis, design, construction, and maintenance of
software and its associated documentation;

• an engineering science that applies the concepts
of analysis, design, coding, testing, documenta-
tion, and management to the successful comple-
tion of large, custom-built computer programs
under time and budget constraints; and

• the systematic application of methods, tools,
and techniques that achieve a stated require-
ment or objective for an effective and efficient
software system.

Figure 2 illustrates the engineering relationships
between system engineering, SwSE, and SwE.
Traditional system engineering does initial analy-
sis and design as well as final system integration
and testing.

During the initial stage of software development,
SwSE is responsible for software requirements
analysis and architectural design. SwSE also man-
ages the final testing of the software system. Finally,
SwE manages what system engineers call compo-
nent engineering.

SwSE and project management
The project management process involves assess-

ing the software system’s risks and costs, estab-
lishing a schedule, integrating the various engi-
neering specialties and design groups, maintaining
configuration control, and continuously auditing

Figure 2. Engineering relationships between system engineering, software system
engineering (SwSE), and software engineering. SwSE is responsible for require-
ments analysis, architectural design, and final software-system testing.

• Planning
• Organizing
• Staffing
• Directing
• Controlling

Project management

• Requirements
 analysis
• Software design
• Process planning
• Process control
• Verification, validation,
 and testing

Software system engineering

• Software design
• Coding
• Unit testing
• Software subsystem
 integration

Software engineering

Figure 3. Management relationships between software system engineering
(SwSE), software engineering, and project management. SwSE is responsible for
determining the technical approach.

the effort to ensure that the project meets costs and
schedules and satisfies technical requirements.6

Figure 3 illustrates the management relationships
between project management, SwSE, and SwE.
Project management has overall management
responsibility for the project and the authority to
commit resources. SwSE determines the technical
approach, makes technical decisions, interfaces
with the technical acquirer, and approves and
accepts the final software product. SwE is respon-
sible for developing the software design, coding the
design, and developing software components.

THE FUNCTIONS OF SOFTWARE
SYSTEM ENGINEERING

Table 1 lists the five main functions of system
engineering correlated to SwSE, along with a brief
general description of each SwSE function.

Requirements analysis
The first step in any software development activ-

ity is to determine and document the system-level
requirements in either a system requirements speci-
fication (SRS) or a software requirements specifica-
tion or both. Software requirements include capa-
bilities that a user needs to solve a problem or
achieve an objective as well as capabilities that a sys-
tem or component needs to satisfy a contract, stan-
dard, or other formally imposed document.7

We can categorize software requirements as fol-
lows:8

• Functional requirements specify functions that
a system or system component must be capa-
ble of performing.

• Performance requirements specify perfor-
mance characteristics that a system or system
component must possess, such as speed, accu-
racy, and frequency.

• External interface requirements specify hard-
ware, software, or database elements with
which a system or component must interface,
or set forth constraints on formats, timing, or

other factors caused by such an interface.
• Design constraints affect or constrain the

design of a software system or software sys-
tem component, for example, language re-
quirements, physical hardware requirements,
software development standards, and software
quality assurance standards.

• Quality attributes specify the degree to which
software possesses attributes that affect qual-
ity, such as correctness, reliability, maintain-
ability, and portability.

Software requirements analysis begins after sys-
tem engineering has defined the acquirer and user
system requirements. Its functions include identi-
fication of all—or as many as possible—software
system requirements, and its conclusion marks the
established requirements baseline, sometimes called
the allocated baseline.2

Software design
Software design is the process of selecting and

documenting the most effective and efficient sys-
tem elements that together will implement the soft-
ware system requirements.9 The design represents
a specific, logical approach to meet the software
requirements.

Software design is traditionally partitioned into
two components:

• Architectural design is equivalent to system
design, during which the developer selects the
system-level structure and allocates the software
requirements to the structure’s components.
Architectural design—sometimes called top-level
design or preliminary design—typically defines
and structures computer program components
and data, defines the interfaces, and prepares tim-
ing and sizing estimates. It includes information
such as the overall processing architecture, func-
tion allocations (but not detailed descriptions),
data flows, system utilities, operating system
interfaces, and storage throughput.

April 2002 71

Table 1. System engineering functions correlated to software system engineering (SwSE).

System engineering SwSE function SwSE function description
function

Problem definition Requirements analysis Determine needs and constraints by analyzing system requirements
allocated to software

Solution analysis Software design Determine ways to satisfy requirements and constraints, analyze
possible solutions, and select the optimum one

Process planning Process planning Determine product development tasks, precedence, and potential risks
to the project

Process control Process control Determine methods for controlling project and process, measure
progress, and take corrective action where necessary

Product evaluation Verification, validation, Evaluate final product and documentation
and testing

72 Computer

• Detailed design is equivalent to component
engineering. The components in this case are
independent software modules and artifacts.

The methodology proposed here allocates archi-
tectural design to SwSE and detailed design to SwE.

Process planning
Planning specifies the project goals and objectives

and the strategies, policies, plans, and procedures
for achieving them. It defines in advance what to
do, how to do it, when to do it, and who will do it.

Planning a SwE project consists of SwSE man-
agement activities that lead to selecting a course of
action from alternative possibilities and defining a
program for completing those actions.

There is an erroneous assumption that project
management performs all project planning. In real-
ity, project planning has two components—one
accomplished by project management and the other
by SwSE—and the bulk of project planning is a
SwSE function. (This is not to say that project man-

agers might not perform both functions.)
Table 2 shows an example partitioning of plan-

ning functions for a software system project.

Process control
Control is the collection of management activities

used to ensure that the project goes according to
plan. Process control measures performance and
results against plans, notes deviations, and takes
corrective actions to ensure conformance between
plans and actual results.

Process control is a feedback system for how well
the project is going. Process control asks questions
such as: Are there any potential problems that will
cause delays in meeting a particular requirement
within the budget and schedule? Have any risks
turned into problems? Is the design approach still
doable?

Control must lead to corrective action—either
bringing the status back into conformance with the
plan, changing the plan, or terminating the project.

Project control also has two separate compo-
nents: control that project management accom-
plishes and control that software systems
engineering accomplishes. Table 3 shows an exam-
ple partitioning of control functions for a software
system project.

Verification, validation, and testing
The verification, validation, and testing (VV&T)

effort determines whether the engineering process
is correct and the products are in compliance with
their requirements.10 The following critical defini-
tions apply:

• Verification determines whether the products
of a given phase of the software development
cycle fulfill the requirements established during
the previous phase. Verification answers the
question, “Am I building the product right?”

• Validation determines the correctness of the final
program or software with respect to the user’s
needs and requirements. Validation answers the
question, “Am I building the right product?”

• Testing is the execution of a program or par-
tial program, with known inputs and outputs
that are both predicted and observed, for the
purpose of finding errors. Testing is frequently
considered part of validation.

V&V is a continuous process of monitoring sys-
tem engineering, SwSE, SwE, and project manage-
ment activities to determine that they are following
the technical and managerial plans, specifications,

Table 2. Process planning versus project planning.

Software system engineering Project management planning
planning activities activities

Determine tasks to be done Determine skills necessary to do the tasks
Establish order of precedence Establish schedule for completing the
between tasks project
Determine size of the effort Determine cost of the effort
(in staff time)
Determine technical approach to Determine managerial approach to
solving the problem monitoring the project’s status
Select analysis and design tools Select planning tools
Determine technical risks Determine management risks
Define process model Define process model
Update plans when the requirements Update plans when the managerial
or development environment change conditions and environment change

Table 3. Process control versus project control.

Software system engineering Project management control
control activities activities

Determine the requirements to be met Determine the project plan to be followed
Select technical standards to be Select managerial standards to be
followed, for example, IEEE Std. 830 followed, for example, IEEE Std. 1058
Establish technical metrics to control Establish management metrics to control
progress, for example, requirements progress, for example, cost growth,
growth, errors reported, rework schedule slippage, staffing shortage
Use peer reviews, in-process reviews, Use joint acquirer-developer (milestone)
software quality assurance, VV&T, and reviews and SCM to determine adherence
audits to determine adherence to to cost, schedule, and progress
requirements and design
Reengineer the software requirements Replan the project plan when necessary
when necessary

standards, and procedures. V&V also evaluates the
SwE project’s interim and final products. Interim
products include requirements specifications,
design descriptions, test plans, and review results.
Final products include software, user’s manuals,
training manuals, and so forth.

Any individual or functions within a software
development project can do V&V. SwSE uses V&V
techniques and tools to evaluate requirements spec-
ifications, design descriptions, and other interim
products of the SwSE process. It uses testing to
determine if the final product meets the project
requirements specifications.

The last step in any software development activ-
ity is to validate and test the final software product
against the software requirements specification and
to validate and test the final system product against
the SRS.

S ystem engineering and SwSE are disciplines
used primarily for technical planning in the
front end of the system life cycle and for ver-

ifying that the plans were met at the project’s end.
Unfortunately, a project often overlooks these dis-
ciplines, especially if it consists entirely of software
or runs on commercial off-the-shelf computers.

Ignoring the systems aspects of any software pro-
ject can result in software that will not run on the
hardware selected or will not integrate with other
software systems. �

References
1. W.W. Gibbs, “Software’s Chronic Crisis,” Scientific

Am., Sept. 1994, pp. 86-95.
2. IEEE, Software Engineering Standards Collection,

vols. 1-4, IEEE Press, Piscataway, N.J., 1999.
3. R.H. Thayer, “Software System Engineering: A Tuto-

rial,” Software Engineering Volume 1: The Devel-
opment Process, 2nd ed., R.H. Thayer and M.
Dorfman, eds., IEEE CS Press, Los Alamitos, Calif.,
2002, pp. 97-116.

4. IEEE Std. 1220-1998, Standard for Application and
Management of the System Engineering Process,
IEEE Press, Piscataway, N.J., 1998.

5. W.W. Royce, “Software Systems Engineering,” sem-
inar presented as part of the course titled Manage-
ment of Software Acquisition, Defense Systems
Management College, Fort Belvoir, Va., 1981-1988.

6. IEEE Std. 1058-1998, Standard for Software Project
Management Plans, IEEE Press, Piscataway, N.J.,
1998.

7. IEEE Std. 610.12-1990, Standard Glossary of Soft-
ware Engineering Terminology, IEEE Press, Piscat-
away, N.J., 1990.

8. IEEE Std. 830-1998, Recommended Practice for
Software Requirements Specifications, IEEE Press,
Piscataway, N.J., 1998.

9. IEEE Std. 1016-1998, Recommended Practice for
Software Design Descriptions, IEEE Press, Piscat-
away, N.J., 1998.

10. IEEE Std. 1012-1998, Standard for Software Verifi-
cation and Validation, IEEE Press, Piscataway, N.J.,
1998.

Richard H. Thayer is an emeritus professor in soft-
ware engineering at California State University,
Sacramento. He is also a consultant in software
engineering and project management and a visit-
ing researcher and lecturer at the University of
Strathclyde, Glasgow, Scotland. He received a PhD
in electrical engineering from the University of Cali-
fornia at Santa Barbara. Thayer is a Fellow of the
IEEE, an Associate Fellow of the American Insti-
tute of Aeronautics and Astronautics, and a mem-
ber of the IEEE Computer Society and the ACM.
Contact him at r.thayer@computer.org.

April 2002 73

I EEE Dis t r ibu ted Sys tems On l ine br ings you
p e e r - r e v i e w e d f e a t u r e s , t u t o r i a l s ,

a n d e x p e r t - m o d e r a t e d p a g e s c o v e r i n g a g r o w i n g
s p e c t r u m o f i m p o r t a n t t o p i c s , i n c l u d i n g

To get regular updates, email dsonline@computer.org

✔ Grid Computing ✔ Security
✔ Distributed Agents ✔ Middleware
✔ Mobile and Wireless
✔ and more!

DS Online recently relaunched with a new design.
Check us out for news, book reviews, and more!

Distributed Systems Online
supplements the coverage
in IEEE Internet Computing

and IEEE Pervasive
Computing.

Each monthly issue includes

magazine content and issue

addenda such as source code,

tutorial examples, and virtual tours.

To keep up
with all that’s happening
in distributed systems,

check out

dsonline.computer.org

