
UML Components

John Daniels
Syntropy Limited
john@syntropy.co.uk

© Syntropy Limited 2001 All rights reserved

email:john@syntropy.co.uk Syntropy Limited

Agenda

• Aspects of a component

• A process for component specification

• Implications for the UML

email:john@syntropy.co.uk Syntropy Limited

Aspects of a component

email:john@syntropy.co.uk Syntropy Limited

UML

Unified Modeling Language

• The UML is a standardised language for
describing the structure and behaviour of
things

• UML emerged from the world of object-
oriented programming

• UML has a set of notations, mostly graphical

• There are tools that support some parts of
the UML

email:john@syntropy.co.uk Syntropy Limited

1..* Interface

realization*

! Specification unit

! Implementation unit

Class
Implementation source

0..1
1 Class

*

1

instance

Aspects of an Object

Object

! Execution unit

email:john@syntropy.co.uk Syntropy Limited

Only interoperable
within the language.
Single address space

Object
Principles
Object

Principles

developed within

Typically language neutral.
Multiple address spaces.
Non-integrated services

Distributed
Object

Technology

Distributed
Object

Technology

1989-
adopted by

CORBA
DCOM

RMI

Object-oriented
Programming

Object-oriented
Programming

1967-
Smalltalk

JavaC++

adopted by

ComponentsComponents

1995-

A way of packaging
object implementations
to ease their use.
Integrated services

EJB

COM+/.NET

Evolving

Components in context

email:john@syntropy.co.uk Syntropy Limited

Component standard features

• Component Model:
– defined set of services that support the software

– set of rules that must be obeyed in order to take
advantage of the services

• Simple programming model, no need to
design/know about the infrastructure

• Services include:
– remote access, transactions, persistent storage, security

– typically use services by configuring not programming

email:john@syntropy.co.uk Syntropy Limited

! It conforms to a standard

Enterprise
Component

Standard

! It has an
implementation

for (int i=0;
i<limit; i++)
{ list[i] = …
}; ……

! It can be
packaged
into modules

! It can be
deployed

Aspects of a component

spec
! It has a specification

?

email:john@syntropy.co.uk Syntropy Limited

Component
Specification

spec

Interface

realization
1

1..*

*

*

! Specification unit

! Packaging unit

Component
Module

file
1..*

1..*

Component
Object

*

1

instance

! Execution unit

! Implementation unit

Component
Implementation source

0..1
1

Component forms

Component

1..*

Class
Implementation Classsource

Interface

realization
0..1 *

1

Object

*

1

instance

email:john@syntropy.co.uk Syntropy Limited

Component
Spec

Interface

Two distinct contracts

Client
<<use>>

Usage contract: a contract between a
component object’s interface and a client

Component

<<realize>>

Interface

Realization contract: a contract between
a component specification and a
component

email:john@syntropy.co.uk Syntropy Limited

placeOrder(custNum, prodNum, quan)
numOfOrders(custNum): Integer

IOrderMgt

reserveStock(prodNum, quan)
availableStock(prodNum): Integer

IProductMgt

Interface specification

We could specify placeOrder()
like this:

“The number of orders for the
customer is increased by one
and a reserveStock message is
sent to the component
supporting the IProductMgt
interface”

email:john@syntropy.co.uk Syntropy Limited

The client cares about this - it affects the
subsequent result of numOfOrders().
Therefore it is part of the usage contract

The IOrderMgt client does not care about
this - but the implementer does.
Therefore it is part of the realization
contract

“The number of orders for the
customer is increased by one
and a reserveStock message
is sent to the component
supporting the IProductMgt
interface”

Separation of specification concerns

email:john@syntropy.co.uk Syntropy Limited

Component
Specification

Component
Interface

• Represents the usage contract
• Provides a list of operations
• Defines an underlying logical

information model specific to
the interface

• Specifies how operations
affect or rely on the
information model

• Describes local effects only

• Represents the realization
contract

• Provides a list of supported
interfaces

• Defines the run-time unit
• Defines the relationships

between the information models
of different interfaces

• Specifies how operations should
be implemented in terms of
usage of other interfaces

Interfaces versus Component Specs

email:john@syntropy.co.uk Syntropy Limited

The Realization Contract

Contracts and roles

Specifier (Architect)
A person who produces the technical

specification for a system or
components within a system

Realizer
A person who builds a

component that meets a
component specification

Client
A person who writes
software that uses a

component

The Usage Contract

email:john@syntropy.co.uk Syntropy Limited

Installed
Component

installed as

server

! Registration unit

1..*1..*

*

1

Installed
Module

copy

! Installation unit

1
*

file

Component
Component

Module
1..*

1..*

Component deployment

email:john@syntropy.co.uk Syntropy Limited

applicationObject:
ComponentObject

instance

docObject:
ComponentObject

instance

File / New

C:/../winword.exe:
InstalledModule

copy

wordApplication:
InstalledComponent

installed as

installed as server

server

wordDocument:
InstalledComponent

file

file

wordApplication:
Component

winword.exe:
ComponentModule

wordDocument:
Component

Example - Microsoft Word

email:john@syntropy.co.uk Syntropy Limited

invoiceABC:
ComponentObject

instance

c:/../invoice.jar:
InstalledModule

copyinstalled as

invoiceBean:
InstalledComponent

server

file
invoice.jar:

ComponentModule

invoiceBean:
Component

c:/../invoice.java:
ComponentImplementationrealization

invoice:
ComponentSpec

Example - Enterprise Java Beans

email:john@syntropy.co.uk Syntropy Limited

A process for
component specification

email:john@syntropy.co.uk Syntropy Limited

Application Architecture Layers

Service

Data

Presentation

Client

Web Client

Web Server

Application Server

Database Server

Existing
System
(server)

HTTP

RMI / IIOP / DCOM RMI / IIOP / DCOM

JDBC / ODBC / SQL

Any

email:john@syntropy.co.uk Syntropy Limited

Web Server

Application Server

Component
Object

Component
Object

Component
Object

Component
Object

Component
Object

A/JSP

Existing
System

Application Blueprint

Database

email:john@syntropy.co.uk Syntropy Limited

Service

Presentation
User Interface

User Dialog

System Services

Business Services

Finer-Grain Application Layers

UI Logic
What the user sees

Dialog Logic (UseCases)
Supports multiple UIs
Transient Dialog State

Business transactions
Allows multiple Dialogs
(including Batch)
Business Integrity State

Sub-transactions
Business Instance State

Data

email:john@syntropy.co.uk Syntropy Limited

Management and Development Processes

• Management Processes
– Schedule work and plan deliveries

– Allocate resources

– Monitor progress

– Control risk

• Development Processes
– Create working software from requirements

– Focus on software development artifacts

– Described independently of the management process

– Defines ordering constraints and dependencies

– Organized into Workflows

Specification
WorkflowBusiness Concept

models

Component specs
& architectures

Use Case
models

Concept model
Use Case model
Component specs
Components

0% 100%% complete

email:john@syntropy.co.uk Syntropy Limited

Specification Provisioning Assembly

Test

Requirements

Deployment

Business
requirements

Business Concept
models

Existing
assets

Technical
constraints

Components

Component specs
& architectures

User
interface

Use Case
models

Assemblies

Tested
assemblies

Workflows in the development process

Workflow (c.f. RUP)

Artefact

email:john@syntropy.co.uk Syntropy Limited

Requirements
Workflow

Problem domain
knowledge

Business
requirements

Develop business
processes

Identify Use Cases

Software
boundary
decisions

Use Cases

Develop Business
Concept Model

Business
Concept
Model

The Requirements Workflow

email:john@syntropy.co.uk Syntropy Limited

Check
availability

Make
reservation

Take up
reservation

Cancel
reservation

Amend
reservation

[suitable
room]

[else]

customer arrives/

cancel request/

amendment
request/

Wait for
event

enquiry/

Process no
show

no show/

Confirm
reservation Notify billing

system

Business process

We want to provide some automated
support for managing hotel reservations

email:john@syntropy.co.uk Syntropy Limited

Hotel Chain

Hotel

Clerk

Room

Bill

Payment

ReservationCustomer

Address

1

1..*
1

1..*

1..*

11
*

* 0..1

0..1

0..1

1

1

*1

1
0..1

*

*

allocation

contactedHotel

contactAddress

RoomType
1
*

1

*

Business Concept Model

email:john@syntropy.co.uk Syntropy Limited

[suitable
room]

Check
availability

Make
reservation

Take up
reservation

Cancel
reservation

Amend
reservation

[else]

customer arrives/

cancel request/

amendment
request/

Wait for
event

enquiry/

Process no
show

no show/

Confirm
reservation Notify billing

system

Identify Use Cases

A use case describes the interaction that
follows from a single business event. Where
an event triggers a number of process
steps, all the steps form a single use case.

email:john@syntropy.co.uk Syntropy Limited

Reservation system

ReservationMaker

Guest

BillingSystem

ReservationAdministrator

Cancel a
reservation

Make a
reservation

Update a
reservation

Take up a
reservation

Process no
shows

Add, amend,
remove

hotel, room,
customer,

etc.

Use Case
diagram

email:john@syntropy.co.uk Syntropy Limited

Name
Initiator
Goal

Make a Reservation
Reservation Maker
Reserve a room at a hotel

Main success scenario
1. Reservation Maker asks to make a reservation
2. Reservation Maker selects hotel, dates and room type
3. System provides availability and price
4. Reservation Maker agrees to proceed
5. Reservation Maker provides name and postcode
6. Reservation Maker provides contact email address
7. System makes reservation and gives it a tag
8. System reveals tag to Reservation Maker
9. System creates and sends confirmation by email

Steps

or
Extension

Points

Extensions
3. Room Not Available

a) System offers alternative dates and room types
b) Reservation Maker selects from alternatives

6. Customer already on file
a) Resume 7

Alternatives
Use an informal
“Alternatives”
section if you don’t
want to specify the
detail required for
an extension

email:john@syntropy.co.uk Syntropy Limited

Provisioning

Specification

Requirements

Component
Identification

Component
Interaction

Component
Specification

The Specification Workflow

email:john@syntropy.co.uk Syntropy Limited

Service

Presentation

System Services

Business Services

Components in the service layers

Data

Business
Component

Business
Component

System
Component

System
Component

System interfaces
operations support use
case steps

Business interfaces
operations support core
business logic

email:john@syntropy.co.uk Syntropy Limited

Component
Identification

Business Concept
Model

Use Case
Model

Identify System
Interfaces & Ops

Identify Business
Interfaces

Create Initial
Comp Specs &
Architecture

Existing
Assets

Existing
Interfaces

Architecture
Patterns

Business
Interfaces

Component
Specs &
Architecture

System
Interfaces

Develop Business
Type Model

Business
Type Model

Component Identification

email:john@syntropy.co.uk Syntropy Limited

2. Reservation Maker selects
hotel, dates and room type

3. System provides availability and
price

7. System makes reservation and
gives it a tag

8. System reveals tag to
Reservation Maker

9. System creates and sends
confirmation by email

Make a
Reservation

Use case

Use
case

steps

Make
Reservation

<<interface type>>
IMakeReservation

getHotelDetails()
getRoomInfo()
makeReservation()

Dialog
logic

System
Interface

System interfaces act as facades - they are the point of contact for the UI and other
external agents. They are supported by components in the system services layer.
Start with one interface per use case, then refactor as necessary.

Identify System Interfaces and operations

email:john@syntropy.co.uk Syntropy Limited

<<interface type>>
ITakeUpReservation

getReservation()
beginStay()

<<interface type>>
IMakeReservation

getHotelDetails()
getRoomInfo()
makeReservation()

Use case step operations

Return a list of hotels and the
room types they have

Return price and availability
given hotel, room type and
dates

Create a reservation given
hotel, room type and dates;
return its tag

Return reservation details
given a tag

Given a tag, allocate a room
and notify billing system

email:john@syntropy.co.uk Syntropy Limited

Hotel Chain

Hotel

Clerk

Room

Bill

Payment

ReservationCustomer

Address

1

1..*
1

1..*

1..*

11
*

* 0..1

0..1

0..1

1

1

*1

1
0..1

*

*

allocation

contactedHotel

contactAddress

RoomType
1
*

1

*

" "

"
" "

"

Develop the Business Type Model

email:john@syntropy.co.uk Syntropy Limited

<<type>>
RoomType

name: String
price: Currency

<<type>>
Customer

name: String
postCode: String
email: String

1

<<type>>
Hotel

name: String

<<type>>
Room

number: String
<<type>>

Reservation
resRef: String
dates: DateRange

1..*

11

*

* 0..1
*

allocation

1
*

1 1..*
1

*

<<trace>>
Business

Concept Model
Business

Type Model

Initial Business Type Diagram

email:john@syntropy.co.uk Syntropy Limited

Identify Core types

• Core types represent the primary business
information that the system must manage

• Each core type will correspond directly to a business
interface

• A core type has:
– a business identifier, usually independent of other identifiers

– independent existence – no mandatory associations
(multiplicity equal to 1), except to a categorizing type

• In our case study:
– Customer YES. Has id (name) and no mandatory assocs.

– Hotel YES. Has id (name) and no mandatory assocs.

– Reservation NO. Has mandatory assocs.

– Room NO. Has mandatory assoc to Hotel

– RoomType NO. Has mandatory assoc to Hotel

email:john@syntropy.co.uk Syntropy Limited

<<type>>
Customer

<<type>>
Hotel

<<type>>
RoomType

name: String
price(Date): Currency
stayPrice(DateRange): Currency
available(DateRange): Boolean

<<core>>
Customer

name: String
postCode: String
email: String

1

<<interface type>>
IHotelMgt *

<<interface type>>
ICustomerMgt

*

<<core>>
Hotel

name: String

<<type>>
Room

number: String
<<type>>

Reservation
resRef: String
dates: DateRange

1..*
*

* 0..1
*

allocation

1
*

1..*
1

*

Responsibility for holding
this association has been
allocated to IHotelMgtResponsibility for business

types is shown by containment

Identify business interfaces

1

11

email:john@syntropy.co.uk Syntropy Limited

Component Specifications

• We need to decide what components we want, and
which interfaces they will support

• These are fundamental architectural decisions

• Business components:
– they support the business interfaces

– remember: components define the unit of development
and deployment

• The starting assumption is one component spec
per business interface

<<comp spec>>
CustomerMgr

ICustomerMgt <<component spec>>
HotelMgr

IHotelMgt

email:john@syntropy.co.uk Syntropy Limited

<<comp spec>>
BillingSystem

IBilling

IBilling

<<comp spec>>
Reservation

System

IMakeReservation

ITakeUpReservation

IHotelMgt

ICustomerMgt

System components

• We will define a single system component spec
that supports all the use case system interfaces
– Alternatives: one component per use case, support system

interfaces on the business components

• Use a separate component spec for billing system
wrapper

email:john@syntropy.co.uk Syntropy Limited

<<comp spec>>
HotelMgr

IHotelMgt

<<comp spec>>
CustomerMgr

ICustomerMgt

<<comp spec>>
BillingSystem IBilling

<<comp spec>>
Reservation

System
IMakeReservation

ITakeUpReservation

Component architecture

email:john@syntropy.co.uk Syntropy Limited

<<comp object>>
:HotelMgr

IHotelMgt

<<comp object>>
:CustomerMgr

ICustomerMgt

<<comp object>>
:BillingSystem IBilling

<<comp object>>
:Reservation

System
IMakeReservation

ITakeUpReservation

Minimal component object architecture

email:john@syntropy.co.uk Syntropy Limited

Component
InteractionDiscover Business

Operations

Refine
Component Specs
& Architecture

Business
Interfaces

Component Specs
& Architecture

System
Interfaces

Refine
Interfaces & Ops

Component Specs
& ArchitectureInterfaces

Component Interaction

email:john@syntropy.co.uk Syntropy Limited

Operation discovery

• Uses interaction diagrams (collaboration
diagrams)

• The purpose is to discover operations on
business interfaces that must be specified
– not all operations will be discovered or specified

• Take each use case step operation in turn:
– decide how the component offering it should interact

with components offering the business interfaces

– draw one or more collaboration diagram per operation

– define signatures for all operations

email:john@syntropy.co.uk Syntropy Limited

/IMakeReservation:ReservationSystem
getHotelDetails()

/IHotelMgt

1:getHotelDetails()

<<data type>>
HotelDetails

id: HotelId
name: String
roomTypes: String []

<<interface type>>
IMakeReservation

getHotelDetails()
getRoomInfo()
makeReservation()

<<interface type>>
IMakeReservation

getHotelDetails (in match: String): HotelDetails []
getRoomInfo ()
makeReservation ()

<<interface type>>
IHotelMgt

getHotelDetails (in match: String): HotelDetails []

email:john@syntropy.co.uk Syntropy Limited

/IMakeReservation:ReservationSystem

makeReservation ()

/ICustomerMgt

1:getCustomerMatching()

<<interface type>>
IMakeReservation

getHotelDetails (in match: String): HotelDetails []
getRoomInfo (in res: ReservationDetails, out availability: Boolean, out price: Currency)
makeReservation (in res: ReservationDetails, in cus: CustomerDetails, out resRef: String): Integer

<<interface type>>
IHotelMgt

getHotelDetails (in match: String): HotelDetails []
getRoomInfo (in res: ReservationDetails, out availability: Boolean, out price: Currency)
makeReservation (in res: ReservationDetails, in cus: CustId, out resRef: String): Boolean

/IHotelMgt

2:makeReservation()

<<data type>>
CustomerDetails

name: String
postCode[0..1]: String
email[0..1]: String

3:notifyCustomer()

email:john@syntropy.co.uk Syntropy Limited

Component
Specification

Interfaces

Specify Operation
Pre/Post-Conditions

Interfaces

Specify Component-
Interface constraints

Define Interface
Information Models

Business
Type Model

Component Specs
& Architecture

Component Specs
& Architecture

Component Specification

email:john@syntropy.co.uk Syntropy Limited

<<interface type>>
ICustomerMgt

getCustomerMatching (in custD: CustomerDetails, out cusId: CustId): Integer
createCustomer(in custD: CustomerDetails, out cusId: CustId): Boolean
getCustomerDetails (in cus: CustId): CustomerDetails
notifyCustomer (in cus: CustId, in msg: String)

Customer

id: CustId
name: String
postCode: String
email: String

*

Interface information model

Defines the set of information assumed to be held by a
component object offering the interface, for the
purposes of specification only.

Implementations do not have to hold this information
themselves, but they must be able to obtain it.

The model need only be sufficient to explain the effects of
the operations.

The model can be derived from the Business Type Model.

email:john@syntropy.co.uk Syntropy Limited

context ICustomerMgt::getCustomerDetails (in cus: CustId): CustomerDetails

pre:
-- cus is valid
customer->exists(c | c.id = cus)

post:
-- the details returned match those held for customer cus
Let theCust = customer->select(c | c.id = cus) in
result.name = theCust.name
result.postCode = theCust.postCode
result.email = theCust.email

Pre- and post-conditions

• If the pre-condition is true, the post-condition must be true

• If the pre-condition is false, the post-condition doesn’t
apply

• A missing pre-condition is assumed ‘true’

• Pre- and post-conditions can be written in natural language
or in a formal language such as OCL

email:john@syntropy.co.uk Syntropy Limited

<<interface type>>
IHotelMgt

getHotelDetails (in match: String): HotelDetails []
getRoomInfo (in res: ReservationDetails, out availability: Boolean, out price: Currency)
makeReservation (in res: ReservationDetails, in cus: CustId, out resRef: String): Boolean
getReservation(in resRef: String, out rd ReservationDetails, out cusId: CustId): Boolean
beginStay (resRef: String , out roomNumber: String): Boolean

Hotel

id: HotelId
name: String

Room

number: String

RoomType
name: String
available(during: DateRange): Boolean
price(on: Date): Currency
stayPrice(for: DateRange): Currency

Customer

id: CustId

Reservation

resRef: String
dates: DateRange
claimed: Boolean

*

1..*
1

1

1
1

0..1

** *

* *

1
allocation

*

email:john@syntropy.co.uk Syntropy Limited

:Hotel
{id=4}

:RoomType
{name=single}

:RoomType
{name=double}

:Customer
{id=38}

:Reservation
{refRef=H51}

before

:Hotel
{id=4}

:Reservation
{resRef=A77}

:RoomType
{name=single}

:RoomType
{name=double}

:Customer
{id=92}

:Customer
{id=38}

:Reservation
{refRef=H51}

after

makeReservation ()

email:john@syntropy.co.uk Syntropy Limited

context IHotelMgt::makeReservation (
in res: ReservationDetails, in cus: CustId, out resRef: String): Boolean

pre:
-- the hotel id and room type are valid
hotel->exists(h | h.id = res.hotel and h.room.roomType.name->includes(res.roomType))

post:
result implies

-- a reservation was created
-- identify the hotel
Let h = hotel->select(x | x.id = res.hotel)->asSequence->first in

-- only one more reservation now than before
(h.reservation - h.reservation@pre)->size = 1 and
-- identify the reservation
Let r = (h.reservation - h.reservation@pre)->asSequence->first in

-- return number is number of the new reservation
r.resRef = resRef and
-- other attributes match
r.dates = res.dateRange and
r.roomType.name = res.roomType and not r.claimed and
r.customer.id = cus

email:john@syntropy.co.uk Syntropy Limited

<<comp spec>>
Reservation

System

IMakeReservation

IHotelMgt ICustomerMgt

ITakeUpReservation

IBilling

Specifying a component (1)

Specification of interfaces offered and used
(part of the realization contract)

email:john@syntropy.co.uk Syntropy Limited

<<comp spec>>
Reservation

System

<<interface type>>
ICustomerMgt

<<interface type>>
IHotelMgt

1 {frozen}

<<interface type>>
IBilling1 {frozen}

1 {frozen}

Specifying a component (2)

Specification of the component object architecture.
This tells us how many objects offering

the used interfaces are involved

email:john@syntropy.co.uk Syntropy Limited

Context ReservationSystem

-- between offered interfaces
IMakeReservation::hotel = ITakeUpReservation::hotel
IMakeReservation::reservation = ITakeUpReservation:: reservation
IMakeReservation::customer = ITakeUpReservation::customer

-- between offered interfaces and used interfaces
IMakeReservation::hotel = iHotelMgt.hotel
IMakeReservation::reservation = iHotelMgt.reservation
IMakeReservation::customer = iCustomerMgt.customer

Specifying a component (3)

Specification of the Component Spec-Interface constraints.

The top set of constraints tell the realizer the required relationships
between elements of different offered interfaces.

The bottom set tell the realizer the relationships between elements
of offered interfaces and used interfaces that must be maintained.

email:john@syntropy.co.uk Syntropy Limited

Interactions as specification?

• Is every implementation of ReservationSystem
required to invoke getHotelDetails() in this situation?

• If so, drawing the collaboration diagram is an act of
specification...

• If not, then we are using this technique simply as a
way of discovering useful operations

/IMakeReservation:ReservationSystem
getHotelDetails()

/IHotelMgt

1:getHotelDetails()

email:john@syntropy.co.uk Syntropy Limited

theComponentBeing Specified/IW: A

1:doIt (a, b)

aComponentSupporting/IX: C

anotherComponent: B

aComponentSupporting/IY

1.1:doIt (a, b)

1.1.1:doIt (a, b)

Specifying a component (4)

If we want to provide a more detailed
specification we can use interaction
diagram fragments.

These are pieces of the diagrams we
drew earlier, for operation discovery,
that focus on the component being
specified.

Each fragment specifies how a
particular operation is to be
implemented in terms of interaction
with other components.

Warning: in some cases this will be
over-specification.

email:john@syntropy.co.uk Syntropy Limited

Requirements

Business Concept Model

Use Case Model

Specification

Business Type Model

Interface Specifications

Component Specifications

Component Architecture

Interactions

Use Case
Diagrams

Use Case
Diagram

Package
Diagram

Component
Specification

Diagrams

Interface
Specification

Diagrams
Class
Diagram

Component
Architecture

Diagram

Business
Concept Model

Diagram Class
Diagram

Business
Type Model

Diagram

Interface
Responsibility

Diagram

Component
Interaction
Diagrams

Collaboration
Diagram

UML diagrams used in the process

email:john@syntropy.co.uk Syntropy Limited

Implications for the UML

email:john@syntropy.co.uk Syntropy Limited

1

UML
Component

Model
ElementNode

Classifier

* * * *

Deployment
characteristics

UML Component (v1.4)

• UML Glossary: “a physical, replaceable part […] that
packages implementation and […] provides the realization
of a set of interfaces”

Structure and Behavior
characteristics

Package
characteristics

Artifact

*

*

Implementation
characteristics

Component
Instance

*

email:john@syntropy.co.uk Syntropy Limited

Component
Object

Component
Implementation

Component
Specification

Component

Component
Module

Installed
Module

Installed
Component

Interface

Mapping to UML

UML Class

UML Class

UML Component

UML Artifact

UML Artifact

UML Component

UML Component

UML Component
Instance

<<interface type>>

<<comp spec>>

<<comp imp>>

<<installed comp>>

<<comp module>>

<<comp server>>

Concept UML element (1.4)UML stereotype

(<<comp object>>)

NB your UML tool might let
you use Interface

Strictly, a Set of Artifact

email:john@syntropy.co.uk Syntropy Limited

<<interface type>>
ICustomerMgt

addCustomer()
deleteCustomer()
getCustomer()

<<interface>>
ICustomerMgt

addCustomer()
deleteCustomer()
getCustomer()

<<realize>>

<<comp spec>>
CustomerMgr

<<realize>>

CustomerMgr

<<offers>>

<<offers>>

Realization mappings

email:john@syntropy.co.uk Syntropy Limited

Model “perspectives”

• UML is a language for describing models

• What is the purpose of your model?
– Models that describe the problem domain

• nothing to do with software

– Models that specify software
• ranging from the whole system to one small part

– Models that describe the implementation of software

Problem domain S/W spec Implementation

email:john@syntropy.co.uk Syntropy Limited

Typical usage of UML notations

Use case

Class diagram

Seq/collab
diagram

Activity
diagram

Statechart

Problem domain S/W spec Implementation

information
models

business
processes

boundary
interactions

component
structures

required object
interactions

object lifecycles

component
structures

designed object
interactions

algorithms

object lifecycles

email:john@syntropy.co.uk Syntropy Limited

Same name, different purpose

Problem domain S/W spec Implementation

<<concept>>
Customer

<<type>>
Customer

name: String
postCode: String
email: String

<<class>>
Customer

name: String
postCode: String
email: String

setName (String)

<<interface type>>
ICustomerMgt

*

Business
Concept Model

Business Type Model,
Interface Spec

private
implementation

design

email:john@syntropy.co.uk Syntropy Limited

Want to know more?

• UML Components by John Cheesman and
John Daniels, Addison-Wesley

• http://www.umlcomponents.com

